1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Electrical Engineering
1.3	Department	Electrotechnics and Measurements
1.4	Field of study	Electrical Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/ Qualification	Electrical System/ Engineering
1.7	Form of education	Full time
1.8	Subject code	4

2. Data about the subject

2.1	Subject name				Physics I		
2.2	Course responsible/ lecturer				L.dr.Eng. Boşca Maria – <u>Maria.Bosca@phys.utcluj.ro</u>		
2.3	Teachers in charge of Seminars/ Laboratory/ Project			L.dr.Eng. Boşca Maria – <u>Maria.Bosca@phys.utcluj.ro</u>			
Z.4 fedrolstudy Z.5 Semester		I	2.6 Type of assessment (<i>E – exam, C – colloquium, V – verification</i>)	E			
2.7 Subject <i>DF – fundamental, DD – in</i>		DD — i	n the field, DS – specialty, DC – complementary	DF			
cate	category DI – compulsory, DO – elec			0 – ele	ective, Dfac – optional	DI	

3. Estimated total time

3.1 Number of hours per week:	3	of which	3.2 Course	2	3.3 Seminar	-	3.3 Laboratory	2	3.3 Project	
3.2 Total hours per semester	56	of which	3.5 Course	28	3.6 Seminar	-	3.6 Laboratory	28	3.6 Project	
3.7 Semestrial time distributio	n:									
(a) Guidebook, course documentation, notes and bibliography study							1	8		
(b) Supplementary study in the library, online and in the field specialty documentation							1	0		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							1	4		
(d) Tutoring	(d) Tutoring								-	
(e) Exams and tests									2	2
(f) Other activities										
3.8 Total hours of individual study [sum (3.7(a) to 3.7(f))] 44										
3.9 Total hours per semester [sum of 3.4 and 3.8] 100										
3.10 Number of credit points 4										

4. Prerequisites (where applicable)

4.1	Curriculum	Basic background knowledge in Physics from High school
4.2	Competences	Elements of differential and integral calculation

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre, Technical University of Cluj-Napoca
5.2	For the applications	The presence at the seminaries is compulsory.

6. Specific competences

	-				
	-	Definition of the main physical quantities and their measurement units.			
	-	The use of integral and differential calculus for the description of physical phenomena.			
	-	Acquiring the concepts of energy, energy conservation, efficiency.			
v	-	Acquiring the notions of oscillations and waves (mechanical, electromagnetic).			
ona	-	Acquiring the notion of field (gravitational, electric, magnetic, electromagnetic).			
essio	-	The dual nature of matter in the universe (wave-body dualism).			
Professional	-	Photons and waves attached to microparticles.			
ۍ م	-	Fundamentals of Quantum Physics.			
	-	The structure of atoms and molecules.			
	-	Energy structure of solids.			
	-	The main properties (electrical and magnetic) of solids.			
	-	Identify physical phenomena and explain them.			
	-	Identify the components of a laboratory installation and explain its operation based on the			
es		laboratory report.			
enc	-	To measure with different measuring instruments.			
ipet	-	Process the experimental results and determine other physical quantities based on them.			
Cross competences	-	To graphically represent experimental results and obtain information from graphical			
oss (representations.			
Č	-	To estimate the errors that affect the data obtained through measurements or those			
		determined based on experimental results.			
	-	To solve problems related to the studied physical phenomena.			

7. Discipline objectives (based on specific competencies acquired)

		The development of theoretical knowledge and experimental skills
		in the field of Newtonian mechanics, thermodynamics, fluid
7.1	General objective	mechanics and electricity.
		Using integral and differential calculus to describe physical
		models.
7.2	Specific objectives	 Assimilation by students of the quantities and laws that govern the fundamental physical phenomena for the purpose of the intellectual training of the future engineer. Initiating future engineers in the development and use of physical models, as a practical way of extracting the essential from a complex set of empirical phenomena. Training the skills to quantitatively approach complex problems through exercises applying the fundamental laws of physics.

8. Contents

8	.1. Course (Lectures)	Number of hours	Teaching methods	Additional remarks
	Course 1. Physical quantities and units of measure. Operations with vectors.	2 hours		
	Course 2. Material point mechanics. Cinematics. The fundamental principles of mechanics. Conservation laws in mechanics.	2 hours	Systematic	
	Course 3. Harmonic oscillations. Composition of parallel and perpendicular harmonic oscillations.	2 hours	exposition of	

	Course 4. Damped and maintained oscillations. Resonance phenomena.	2 hours	physical		
	Course 5. Elastic waves. Waves diffraction. Elastic waves	2 hours	phenomena,		
	reflex and refraction. Waves interference. Stationary	2 110013	conversations,		
	waves.		theoretical and	Exposure	
	Course 6. Acoustic elements. The Doppler effect.	2 hours	experimental	Exposure and free	
	Course 7. Thermodynamics - principles. Simple	2 hours	demonstrations,		
	transformations of ideal gases. Polytropic		observations and	discussions.	
	transformations. Thermal machine. Carnot cycle.	2 h a	analysis of	Computer,	
	Course 8. Course 8 - Electric charge. Coulomb's law. The	2 hours	studied	video	
	electric field. The intensity of the electric field. Electrical		phenomena,	projector,	
	charge distributions. Mechanical work and potential in		learning through	blackboard.	
	an electric field. The electric dipole.		discovery.		
	Course 9. Electric field flow. Gauss's law for the electric	2 hours			
	field. Applications of Gauss's Law. Gauss's law in				
	dielectrics. The electric capacitor.				
	Course 10. Electric current. The intensity of the electric	2 hours			
	current. Current density. Classical theory of electrical				
	conduction in metals. Ohm's law. Direct current circuits.				
	Energy and electrical power.				
	Course 11. The magnetic field. Lorentz force. The	2 hours			
	electromagnetic force. Current loop in uniform				
	magnetic field. Sources of the magnetic field. Biot-				
	Savart's law. Ampere's law. The interaction force				
	between two parallel conductors.				
	Course 12. Law of electromagnetic induction (Faraday's	2 hours	-		
	law). The phenomenon of self-induction. Maxwell's				
	equations. Electromagnetic waves. Propagation of				
	electromagnetic waves.				
	Course 13. Elements of geometric optics. The plane	2 hours			
	diopter. Spherical diopter. The plane mirror. Spherical				
	mirror. Thin lenses.				
	Course 14. Thermoelectric and galvano-magnetic	2 hours			
	effects. Seebeck effect. Thomson effect. The Peltier	-			
	effect. Hall effect.				
Bi	bliography				
	H. D. Young, R. A. Freedman - Sears and Zemansky's Unive	rsity Physic	s with Modern Phys	ics	
	echnology Update (lb. engleza), Pearson - 2013.	,,,,			
	D. Halliday, R. Resnik, Physics, John Willey et sons (any edi	tion)			
3.	http://hyperphysics.phy-astr.gsu.edu				
4.	Lidia Pop, Maria Boșca, Noțiuni de fizică mecanică, Editura	UTPress, 2	012		
	E.Culea, Fizica – elemente de fizica pentru ingineri, Risopri		1		
8.	2. Applications - Seminar /Laboratory/Project	Number of hours	Teaching methods	Additional remarks	
	Laboratory 1. Introduction. Labor protection. List of	2 hours		i citiui K3	
	works. Calculation of errors. Graphical representation.	2 110013			
	tions, calculation of cirors, Graphical representation.				

_				
	Laboratory 2. Determination of the elastic constant of a	2 hours		
	spring.			
	Laboratory 3. The study of the thermoelectric effect.	2 hours	Theoretical and	Laboratory
	Laboratory 4. The study of electrical conductivity of	2 hours	experimental	work is
	metals.		demonstration,	performed
	Laboratory 5. Determination of the viscosity coefficient	2 hours	conversation,	practically.
	of liquids (Stokes method).		observation,	
	Laboratory 6. Experimental verification of the Stefan-	2 hours	and analysis.	
	Boltzmann law.			
	Laboratory 7. Study of the activation energy of a	2 hours		
	semiconductor.			
	Laboratory 8. The study of transverse standing waves in	2 hours		
	vibrating strings.			
	Laboratory 9. The study of the photoelectric effect.	2 hours		
	Laboratory 10. Study of a spectroscope and qualitative	2 hours		
	spectral analysis.			
	Laboratory 11. Hall effect study.	2 hours		
	Laboratory 12. The study of polarization of light.	2 hours		
	Laboratory 13. Applications.	2 hours		
	Laboratory 14. Session to cover missed lab works.	2 hours		
B	ihliography	•	•	

Bibliography

1. H. D. Young, R. A. Freedman - Sears and Zemansky's University Physics with Modern Physics Technology Update (Ib. engleza), Pearson - 2013.

2. D. Halliday, R. Resnik, Physics, John Willey et sons (any edition)

3. http://hyperphysics.phy-astr.gsu.edu

4. Lidia Pop, Maria Boşca, Noțiuni de fizică mecanică, Editura UTPress, 2012

5. E.Culea, Fizica – elemente de fizica pentru ingineri, Risoprint, 2010

6. https://biblioteca.utcluj.ro/files/carti-online-cu-coperta/519-0.pdf

7. Petru Pășcuță, Lidia Pop, Maria Boșca, Fizică lucrări practice, Editura UTPress 2013

9. Alignment of course content with expectations of the epistemic community, professional associations, and representative employers in the field

The acquired skills are necessary for them and will help them to understand other disciplines, especially when they will carry out their activity in engineering fields.

10. Assessment

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade (%)			
10.4 Course	Test with questions from all the taught chapters that consists of solving some problems and theory topics.	Written test (T)	80 %			
10.5 Laboratory	Continuous assessment.	Written and oral (L)	20%			
10.6 Minimum standard of performance:						
Final grade= 0.8 · T + 0.2 · L = 10 - maximum grade						

The minimum passing grade for the exam is 5

Date of completion	Topics	Title/ Surname/ Name:	Signature
19.09.2024	Course	L.dr.Eng. Maria Boşca	
	Applications Seminar/		
	Laboratory/ Project	L.dr.Eng. Maria Boşca	

Date of approval in the ETHM Department Council

September 2024

Date of approval in the Faculty of Electrical Engineering Council September 2024

Head of Department: Prof. Eng. MICU Dan Doru, PhD

Dean: Assoc. Prof. Eng. CZIKER Andrei, PhD