1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Electrical Engineering
1.3	Department	Electrotechnics and Measurements
1.4	Field of study	Electrical Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/ Qualification	Electrical System/ Engineering
1.7	Form of education	Full time
1.8	Subject code	4

2. Data about the subject

2.1	Subject name				Physics II		
2.2	Course responsible/ lecturer				L.dr.Eng. Boşca Maria – <u>Maria.Bosca@phys.utcluj.ro</u>		
2.3	Teachers in charge of Seminars/ Laboratory/ Project			L.dr.Eng. Boşca Maria – <u>Maria.Bosca@phys.utcluj.ro</u>			
2.4 Year of study		I	2.5 Semester	II	2.6 Type of assessment (<i>E</i> – <i>exam</i> , <i>C</i> – <i>colloquium</i> , <i>V</i> – <i>verification</i>)	E	
2.7 Subject <i>DF – fundamental, DD – ir</i>		DD — i	n the field, DS – specialty, DC – complementary	DF			
category		DI –	compulsory, D	0 – ele	ective, Dfac – optional	DI	

3. Estimated total time

3.1 Number of hours per week:	3	of which	3.2 Course	2	3.3 Seminar	-	3.3 Laboratory	2	3.3 Project	-
3.2 Total hours per semester	42	of which	3.5 Course	28	3.6 Seminar	-	3.6 Laboratory	28	3.6 Project	-
3.7 Individual study:										
(a) Guidebook, course documentation, notes and bibliography study							2	8		
(b) Supplementary study in the library, online and in the field specialty documentation							1	4		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							1	4		
(d) Tutoring							-			
(e) Exams and tests									2	2
(f) Other activities						-	-			
3.8 Total hours of individual study [sum (3.7(a) to 3.7(f))] 58										
3.9 Total hours per semester [sum of 3.4 and 3.8] 100										
3.10 Number of credit points 4										

4. Prerequisites (where applicable)

4.1	Curriculum	Basic background knowledge in Physics from High school
4.2	Competences	Basic physics knowledge and mathematical analysis

5. Requirements (where appropriate)

5.1	For the course	Amphitheatre, Technical University of Cluj-Napoca
5.2	For the applications	The presence at the seminaries is compulsory.

6. Specific competences

		-	Definition of the main physical quantities and their measurement units.
		-	The use of integral and differential calculus for the description of physical phenomena.
		-	Acquiring the concepts of filed (electric, magnetic, electro-magnetic).
		-	Acquiring the notions of the main quantities (electric and magnetic) of solid body.
		-	Identify physical phenomena and explain them.
lal	ces	-	Operate with physics formulae and demonstrate physics laws.
sion	tenc	-	Solve problems and interpret results.
ofes	upe.	-	Process measurements results for determining other physics quantities.
Pro	Con	-	Compare practical results against theories and draw conclusions.
		-	Graphical representation on various coordinates and obtain relevant information.
		-	Estimate errors which affect obtained data through measurements or data obtained based on
			experiments.
		-	Identify installations components in the lab and understand how they work.
		-	Measure with various instruments.
	es	-	Utilize physics fundamentals in electrical engineering domain.
SS	enc	-	Understand and explain a physical phenomenon.
Cro:	pet	-	Understand physics specific laws in correlation with other disciplines.
	com		
	Ŭ		

7. Discipline objectives (based on specific competencies acquired)

		The development of theoretical knowledge and experimental skills
7.1	General objective	In the field of fundamental laws which govern electric and
		magnetic processes.
		1. Assimilation by students of the quantities and laws that govern the fundamental physical phenomena for the purpose of the
		intellectual training of the future engineer.
7.2	Specific objectives	 in the field of fundamental laws which govern electric and magnetic processes. 1. Assimilation by students of the quantities and laws that gover the fundamental physical phenomena for the purpose of the intellectual training of the future engineer. 2. Initiating future engineers in the development and use of physical models, as a practical way of extracting the essentiat from a complex set of empirical phenomena. 3. Training the skills to quantitatively approach complex problem through exercises applying the fundamental laws of physics.
		physical models, as a practical way of extracting the essential
		from a complex set of empirical phenomena.
		3. Training the skills to quantitatively approach complex problems
		through exercises applying the fundamental laws of physics.

8. Contents

8.1. (Course (Lectures)	Number of hours	Teaching methods	Additional remarks
	Course 1. Notions of elasticity. Electric field. Electric	2 hours		
	force. Intensity and potential of an electric field.			
	Course 2. Electric field flux. Gauss law and	2 hours	Systematic	Exposure
	applications.		exposition of	and free
	Course 3. Electric dipole. Dielectrics in electric field.		physical	discussions.
	Condenser with dielectric. Electric field's density of	2 hours	phenomena,	Computer,
	energy.		conversations,	video
	Course 4. Electro-kinetics topics. Electric current.	2 hours	theoretical and	projector,
	Phenomenon theory of electric conductivity.		experimental	blackboard.
	Course 5. Magnetism topics. Magnetic field. Biot-	2 hours	demonstrations	
	Savart law and applications. Lorentz force.		,	

Course 6. A	Ampere law and applications. Magnetic	2 hours	observations	
field gener	ated by an infinite thread. Field generated		and analysis of	
by a surfac	e current.		studied	
Course 7. E	lectromagnetism topics. Electromagnetic		phenomena,	
induction I	aw. Maxwell equations. Inductance, auto-	2 hours	learning	
inductance	. Magnetic field energy.		through	
Course 8. N	Magnetic materials. Magnetic momentum.		discovery.	
Magnetiza	tion. Para-magnetism. Diamagnetism.	2 hours		
Ferromagn	etism. Other magnetic status:			
antiferrom	agnetism, ferrimagnetism.			
Course 9. E	Electromagnetic waves. Electromagnetic			
waves equ	ation. Transversality of electromagnetic	2 hours		
waves. Ene	ergy transported by electromagnetic			
waves. Veo	tor Poynting.			
Course 10.	Introduction to quantic physics.			
Photoelect	ric effect. Stability problem for hydrogen	2 hours		
atom. Boh	r postulates. Broglie wave.			
Course 11.	Wave mechanics topics. Schrödinger's			
equation.	Applications: Free particle. The particle in	2 hours		
the infinite	potential well. The tunnel effect. The			
microscop	e with tunnel effect.			
Course 12.	From atom to condensate status. The			
atom, quai	ntic numbers, energy levels, spin,	2 hours		
Electrons'	energy bands in solid bodies. Metals.			
semicondu	ictors, insulators,			
Course 13.	Geometric optics topics. Plane dioptre.			
Spheric dic	potre. Plane mirror. Spherical mirror. Thin	2 hours		
lenses.	presente a specie a s			
Course 14.	Galvano-magnetic and thermoelectric			
effects. Ha	Il normal and abnormal effect. Nernst	2 hours		
effect. See	heck effect. Peltier effect	2 110 01 5		
Bibliography				
	Fizică - Elemente de fizică pentru ingineri. I	Risonrint 201	0	
2. I. Ardelea	an, Fizica pentru ingineri, Ed. U.T. PRES, Cluj	-Napoca, 200	15.	
3. T. I. Cret	u, Fizica-curs universitar, Ed. Tehnica, Bucur	esti, 1996.		
4. Cursul de	e Fizica Berkeley, Vol. II – Electricitate si Ma	gnetism, Ed. [Didactica si Pedago	ogica, 1981.
5. P.W. Sea	rs, M.W. Zemansky, H.D. Young, <i>Fizica</i> , Ed. o	didactica si pe	edagogica, 1983.	
8.2. Applications	- Seminar /Laboratory/Project	Number of hours	Teaching methods	Additional remarks
Laboratory	1. Electrostatics applications: Colombian	2 hours		
forces, inte	ensity and potential of an electric field.			
Laboratory	2. Applications of Gauss law and electric	2 hours		
field lines.			Theoretical	
Laboratory	3. Applications of Ampere law.	2 hours	and	

	Laboratory 4. Applications of electromagnetic	2 hours	experimental	Laboratory		
	induction law.		demonstration,	work is		
	Laboratory 5. Electric conduction in metals and	2 hours	conversation,	performed		
	semiconductors.		observation,	practically.		
	Laboratory 6. Photoelectric effect and Broglie waves.	2 hours	and analysis.			
	Laboratory 7. Applications of geometric optics.	2 hours				
Bibli	Bibliography					

- 1. I. Cosma, T. Ristoiu, Fizică aplicată: probleme rezolvate, Ed. U.T. Press, Cluj-Napoca, 2005.
- 2. I.Milea, E.Culea, T.Ristoiu, R.Muntean, I.Lazar, Fizica aplicata-exercitii si probleme pentru invatamantul superior, Ed.UT Pres, 1998.

9. Alignment of course content with expectations of the epistemic community, professional associations, and representative employers in the field

The acquired skills are necessary for them and will help them to understand other disciplines, especially when they will carry out their activity in engineering fields.

10. Assessment

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade (%)			
	The completeness and					
	correctness of the accumulated					
10.4 Course	knowledge, logical coherence	Summative evaluation -	800/			
10.4 Course	and the ability to operate with	assessment	80%			
	the assimilated knowledge in					
	complex intellectual activities.					
		Formative evaluation				
10 E Laboratory	Ability to apply the knowledge,	along the way, activity in	200/			
10.5 Laboratory	in various situations.	the laboratory and solving	20%			
		problems/applications.				
10.6 Minimum standard of performance:						
Final grade= $0.8 \cdot T + 0.2 \cdot L = 10$ - maximum grade						
The minimum passing grade for the exam is 5						

Date of completion	Lecturers	Title/ Surname/ Name:	Signature
19.09.2024	Course	L.dr.Eng. Maria Boşca	cubezea
	Applications Seminar/		
	Laboratory/ Project	L.dr.Eng. Maria Boşca	Mbgea

Date of approval in the ETHM Department Council

September 2024

Head of Department: Prof. Eng. MICU Dan Doru, PhD

Date of approval in the Faculty of Electrical Engineering Council September 2024 Dean: Assoc. Prof. Eng. CZIKER Andrei, PhD