SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Electrical Engineering
1.3	Department	Electrical Machines and Drives
1.4	Field of study	Electrical Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Electrical System
1.7	Form of education	Full time
1.8	Subject code	29.00

2. Data about the subject

2.1	Subject name				Systems Theory and Automation		
2.2	Course responsible/lecturer				Prof. dr. eng. Calin Gh. RUSU <u>calin.rusu@emd.utcluj.ro</u>		
2.3	Teachers in charge of seminars				Sl.dr.eng. Szöke Enikö, eniko.szoke@emd.utcluj.ro Sl.dr. eng SALCU Sorin Ionut, sorin.salcu@emd.utcluj.ro		
2.4	2.4 Year of study II 2.5 Semester 2			2	2.6 Assessment		exam
2.7 9	2.7 Subject Formative category				·		DD
cate	category Optionality						DI

3. Estimated total time

3.1 Number of hours per week	5	of which	3.2 Course	2	3.3 Seminar	1	3.3 Laboratory	2	3.3 Project	-
3.4 Total hours in the curriculum	70	of which	35	28	3.6 Seminar	14	3.6 Laboratory	28	3.6 Project	-
3.7 Individual study:		•								
(a) Manual, lecture materia	al and	notes, bib	liograph	iy					2	21
(b) Supplementary study in the library, online and in the field							7			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							1	4		
(d) Tutoring								6		
(e) Exams and tests										6
(f) Other activities							1			
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 55										
3.9 Total hours per semester (3.4+3.8) 125										
3.10 Number of credit points 5										

4. Pre-requisites (where appropriate)

4.1	Curriculum	Electrical Circuit Theory, Electronics, Mechanics, Mathematical Analysis, Special Mathematics, Programming in C, C++ and Matlab
4.2	Competence	Real and complex variable functions, Laplace transform, Matrix operations, Kirchhoff's theorems, Operational amplifiers, C and C++ programming

5. Requirements (where appropriate)

5.1	For the course	Course classroom with blackboard and multimedia projector/On- line TEAMS, ZOOM, Skype
5.2	For the applications Seminar /Laboratory/Project	Lab Classroom with 10 desktop computer network, 10 labs breadboard kits, Matlab/Simulink academic licence/On-line TEAMS, Teaching by Doing (Do It Yourself – DIY)

6. Specific competences

Professional competences	method, PID controllers
Cross competences	 C6.6. Design compensators using Frequency response techniques for LTI-SISO systems CT 1. Identification of the objectives to be achieved, of the available resources, the conditions for their completion, the working stages, the working times, the accomplishment terms and the related risks. CT 2. Identifying the roles and responsibilities in a multidisciplinary team and applying relationship techniques and efficient work within the team. CT 3. Efficient use of information sources and communication resources and assisted professional training (Internet portals, applications.

7. Discipline objectives (as results from the *key competences gained*)

7.1	General objective	 Understanding the concept of system and the concept of state of a system. Mathematical model as an abstract representation for a physical system. Analyze systems based on models by simulation. Understanding the closed loop systems as control system, PID controller and the automatic control system as the fundamental structure for automation.
7.2	Specific objectives	 Finding the mathematical model for a physical system as transfer function and / or state equations Stability analysis of a system (Routh-Hurwitz and Nyquist method) Finding and analyzing the response of a system in the time and frequency domain Using design methods for control systems using: Root Location and Bode Diagrams, Nyquist Designing control systems with P, PI, PD, PID control law and analyzing the performances of response

8. Contents

8.1. Lecture (syllabus)		Teaching methods	Notes
Course # 1: Introduction, concepts, definitions, signals, systems, regulation problem, non / feedback systems	2		

		1	1
Course # 2: Modeling linear systems. Laplace transform.			
Properties. Linearization of nonlinear systems. Dynamics of	2		
electrical, mechanical and electro-mechanical systems.			
Course # 3: SISO systems, transfer functions, block			
diagrams. MIMO systems, variables and state equations,	2		
Conversion from Transfer Function to State Equations.			
Course # 4: Analysis of the system responses in time			
domain. Transient response and response parameters.			
Stabilized response. Static errors. Simulation and analysis	2		
of the output response.			
Course # 5: Stability analysis. Routh-Hurwitz stability		-	
criterion.	2		
Course # 6: Feedback control systems. Classic P, PI, PD, PID		-	
•	2		
and relay type regulation laws.		PPT	
Course # 7: Root Locus Method.	2	presentations,	
Course # 8: Design of automatic control systems by the	2	videoproiector,	
method Root Locus Techniques. Nichols-Zigler PID tunning	2	On-line Teams	
Course # 9: Analysis of systems response in frequency		OII-IIIIe Tealiis	
domain. Bode diagrams. Performance specification. Gain	2		
margin and Phase margin.			
Course # 10: Frequency Stability Analysis, Nyquist			
Criterion.	2		
Course # 11: Designing control systems based on		-	
frequency response (Bode Diagrams). Compensators with	2		
advance and phase delay.	2		
Course # 12: Modeling MIMO systems. Method of state		-	
variables. Equations of state.	2		
		-	
Course # 13: Analysis of control systems in the state space.	2		
Stability study.		-	
Course # 14: Designing control systems in the state space	2		
by the method of pole allocation.			
Bibliography			
1. Călin RUSU, Teoria si Controlul Sistemelor, note de c	urs 2016.		
2. Marius HANGANUT, Teoria Sistemelor Vol I si vol II L	ito Univers	itatea Tehnica Cluj	1994
3. K. OGATA, Modern Control Engineering 4 rd Ed, Prent	ice Hall, 19	99.	
4. B. C. KUO, Automatic Control Systems 7 th ed, John W	/iley, 1997		
5. Richard C. DORF, Robert H. BISHOP, Modern Control	Systems, 1	1 TH Ed. Prentice ha	ll, 2001, New
Jersey			
6. Călin RUSU , Programarea in Matlab a aplicatiilor cu	I Arduino, L	JTPress, 2019, ISBN	978-606-
737-412-4, http://biblioteca.utcluj.ro/editura			
7. Digital control system design, Călin RUSU, Casa	cartii de stiii	nta, 2000, 973-686	5-092-2, Clui
Napoca		, , , , , , , , , , , , , , , , , , , ,	,,
8. Ingineria robotilor: cinematica, dinamica si contr	ol, Călin R	USU, Mediamira, 2	001, 973-
9358-36-5, Cluj Napoca			
	Number	Teaching	
8.2. Seminar /Laboratory/Project	of hours	methods	Notes
		methous	
Laplace transform of usual signals. Matlab /Simulink	4	Practical	
Modeling of SISO systems. Transfer functions. Block	4	laboratory works	
diagrams, linearization of nonlinear systems.	4	based on	
Modeling MIMO systems, state variables, state equations.	4	Jaseu Uli	

The transient regime response. The response of the stable regime.	4	modelling, simulations with
Stability. Control systems. Classical regulation laws P, PI, PD, PID.	4	Matlab/Simulink. Model Based
The place of the roots in Matlab. Frequency response. Bode diagrams.	4	Development Controller with
Stability, Nyquist Criterion. Dynamic compensation. PID compensator, lead, lag.	4	Arduino MEGA/DUE

Bibliography

- 1. Calin G RUSU, SZŐKE Enikő, KREISZER RADIAN Melinda Matlab in modelarea simularea si controlul sistemelor. Ghid practic pentru studenti, Editura UT PRESS 2008,
- 2. Călin RUSU, SZŐKE Enikő Aplicatii Matlab in controlul sistemelor, Ed Mediamira, Cluj, 2006
- 3. Călin RUSU, SZŐKE Enikő Matlab in controlul sistemelor. Ghid practic pentru studenti si ingineri, Ed Mediamira, 2005
- 4. Matlab 7.1 Student version release 14 with Service Pack3, Matworks , <u>www.matworks.com</u>
- 5. Simulink 6.3 Student version release 14 with Service Pack3, Matworks 2005, <u>www.matworks.com</u>
- 6. Calin G. RUSU. Teoria Sistemelor, note de curs, <u>http://bavaria.utcluj.ro/~rcalin</u>

BIBLIOGRAFIE INTERNET

- 7. Control Tutorials for Matlab (internet) www.engin.umich.edu/group/ctm/index.html
- 8. Internet, <u>www.matworks.com</u>,
- 9. Motoare de cautare Google, Yahoo <u>www.google.com</u>, <u>www.yahoo.com</u>
- 10. SCILAB/XCOS v5.5.2

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

- understanding and systemic analysis of technical problems based on mathematical models, regardless of the field applications

- Analysis and design technical solutions based on a systemic vision

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	Knowledge and ability to use creatively the acquired knowledge		50%
10.5 Seminar/ Laboratory/Project	Homework / Laboratory Theme /Course project	verification	50%
10.6 Minimum standa	ard of performance		

Date of filling in:	15.04.2021	Title Surname Name	Signature
15.04.2021	Lecturer	Prof. dr. eng. Calin Gh. Rusu	
	Teachers in	Sl.dr.eng. SZÖKE Enikö	
	charge of application	Sl.dr.eng. Salcu Sorin Ionuţ	
			·
			B

Date of approval in the department

Head of department Conf.dr.eng. Teodosescu Doru Petre

Date of approval in the faculty

Dean Conf.dr.eng. Cziker Andrei Cristinel