SYLLABUS

1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Electrical Engineering
1.3	Department	Electrotechnics and Measurements
1.4	Field of study	Electrical Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/ Qualification	Electrical System Cluj-Napoca in English language
1.7	Form of education	Full time
1.8	Subject code	37

2. Data about the subject

2.1	Subject name				Special Electrical Machines		
2.2	Course respor	Course responsible/ lecturer			Prof.dr.ing. Loránd SZABÓ – Lorand.Szabo@emd.utcluj.ro		
2.3	Teachers in charge of Seminars/ Laboratory/ Project			Prof.dr.ing. Loránd SZABÓ – <i>Lorand.Szabo@emd.utcluj.ro</i>			
2.4 Year of study 3 2.5 Seme		2.5 Semester	1	2.6 Type of assessment (<i>E – exam, C – colloquium, V – verification</i>)	E		
2.7 SubjectDF – fundamental, DD – icategoryDI – compulsory, DO – ele		DD — i	n the field, DS – specialty, DC – complementary	DD			
		compulsory, D	0 – ele	ective, Dfac – optional	DI		

3. Estimated total time

3.1 Number of hours per week:	5	of which	3.2 Course	2	3.3 Seminar	-	3.3 Laboratory	21	3.3 Project	1
3.2 Total hours per semester	70	of which	3.5 Course	28	3.6 Seminar	-	3.6 Laboratory	28	3.6 Project	14
3.7 Individual study:										
(a) Manual, lecture mat	erial	and notes,	bibliogra	ohy					2	1
(b) Supplementary study in the library, online and in the field						1	14			
(c) Preparation for semi	(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays						2	28		
(d) Tutoring	(d) Tutoring						1	L		
(e) Exams and tests									2	2
(f) Other activities	(f) Other activities					-				
3.8 Total hours of individual study [sum (3.7(a) to 3.7(f))] 80										
3.9 Total hours per semester [sum of 3.4 and 3.8] 150										
3.10 Number of credit points 6										

4. Prerequisites (where applicable)

4.1	Curriculum	Theory of the Electromagnetic field, Electrical machines
4.2	Competences	N/A

5. Requirements (where appropriate)

5.1	For the course	N/A
5.2	For the applications	Attendance at laboratory sessions and project hours is mandatory

6. Specific competences

	-	
Professional	competences	The ability to identify, formulate, and solve engineering problems using a systemic approach. The ability to apply knowledge of engineering, engineering sciences, and applied computer science. The ability to use modern engineering techniques, skills, and tools necessary for engineering practice. The ability to design and conduct experiments, as well as to analyse and interpret the obtained information. The ability to approach and manage specific applications of general electrical engineering. The ability to apply the knowledge acquired about power systems, electrical equipment, and their operation and maintenance. Flexibility in approaching and practically using the latest technologies in the assumed areas of competence.
Cross	competences	Identifying the objectives to be achieved, the available resources, the conditions for their completion, the work stages, the work times, the corresponding deadlines, and the associated risks. Efficient use of informational sources and communication and professional training resources (Internet portals, specialized software applications, databases, online courses, etc.)

7. Discipline objectives (based on specific competencies acquired)

7.1	General objective	Developing competencies in the knowledge, analysis, and applications of special machines used in the industrial
		environment.
7.2	Specific objectives	N/A

8. Contents

8.1.	Course (Lectures)	Number of hours	Teaching methods	Additional remarks
1	Introductory concepts. Specific characteristics of special electric machines. Specific materials used in the construction of special electric machines (permanent magnets, soft magnetic composites – SMC, etc.).	2		
2	Special induction machines. Three-phase, two- phase, and single-phase induction micromotors (single-phase with auxiliary phase, single-phase with shaded poles, etc.).	2		PowerPoint presentations
3	Special DC machines. DC servomotors. Brushless DC motors. Universal motor. DC tachogenerators.	4	Presentation in	prese
4	Permanent magnet synchronous machines.	2	the classroom	oint
5	Variable reluctance electric machines. Switched reluctance motors. Machines with salient poles on the stator and rotor and excitation with permanent magnets. Transverse flux machines.	4		PowerPo
6	Stepper motors. Constructive types (variable reluctance, permanent magnets, and hybrid). Control. Operating characteristics.	4		
7	Linear motors (induction, synchronous, variable reluctance).	4		

	Claw pole synchronous machines (Lundell					
8	generators and the version with permanent	2				
	magnets).					
9	Special electric machines with extreme	2				
	constructions and performances.					
10	Use of special electric machines in vehicles and	2				
Bibli	renewable energy conversion systems.					
	n the UTC-N library:					
	Henneberger G., Viorel IA., Variable reluctance electr	rical machir	nes, Shaker Verlag, A	achen.		
	Germania, 2001			,		
	/iorel I.A., Szabó L., Hybrid Linear Stepper Motors, Me	diamira, Cl	uj, 1998.			
Virte	ual teaching materials:					
	Course presentations in PDF format accessible via pass		e address:			
ł	http://users.utcluj.ro/~szabol/Materiale_didactice/ME	<u>ES.htm</u>				
_						
	n other libraries:	1 2002				
	itzgerald, A. E., et al., Electric machinery, McGraw-Hil /eadon, W.H., Yeadon, A.W., Handbook of small electr		McCrow Hill 2001			
	Stölting, H.D. et al., Handbook of Fractional-Horsepow	•				
	Krishnan, R., Switched Reluctance Motor Drives: Mode			n and		
	Application, CRC Press, 2001.	ing, Siniu	ation, Analysis, Desig	Siranu		
	Gieras, J.F. , Wing, M., Permanent magnet motor tech	nology: des	ign and applications	. Marcel Dekker.		
	2002.	07	0 11 .	· · · ·		
		Number	Tarahina	م ما مان ان م به ما		
8.2	Laboratory	of	Teaching methods	Additional remarks		
		hours	methous	Terriarks		
	Laboratory presentation. Work safety and					
1	regulation presentation. Presentation of session	2		lies		
	content.			supplies, ms, ts.		
2	Single-phase induction motor with auxiliary phase.	4		ent		
3	Switched reluctance machine. Parameter	4	ime	sys um		
	determination. Study of dynamic regime.		per	, pc ion istr		
4	Claw pole permanent magnet synchronous	4	l ex lab	ups isiti g ir		
5	generator (Lundell generator) Stepper motor	4	actical experimer in the laboratory	seti cqu urin		
5	Doubly excited synchronous machine – generator	4	Practical experiments in the laboratory:	atory setups, power s data acquisition syste measuring instrumen		
6	and motor regime	4	Ā	ratc dat me		
7	Linear electric machines	4	-	Laboratory setups, power s data acquisition syster measuring instrumen		
, 8	Final knowledge assessment	2		Ľ,		
	final knowledge assessment					
	ual teaching materials:					
	ching materials in PDF format accessible via password	at the add	ress:			
	://users.utcluj.ro/~szabol/Materiale_didactice/MES.h					
http://users.utcluj.ro/~szabol/Materiale_didactice/MES.htm						

8.3	Project	Number of hours	Teaching methods	Additional remarks		
1	General presentation of the project topic (electromagnetic sizing calculation of a variable reluctance motor).	2	ded ive			
2	Determination of primary design quantities. Determination of main dimensions, air gap width, and electromagnetic stresses.	2	ed on a case study and guide bgression through successive stages of electromagnetic sizing calculations.	N/A		
3	Sizing of the stator winding, poles, and magnetic yoke.	2	se study and through succ electromagn calculations			
4	Sizing of the rotor poles and magnetic yoke.	2	cas on t of e ng (
5	Determination of the electromagnetic parameters of the stator windings, as well as the energy efficiency.	2	Based on a case study and guided progression through successive stages of electromagnetic sizing calculations.			
6	Determination of operating characteristics.	2	B			
7	Final knowledge assessment.	2				
Virt	Bibliography Virtual teaching materials:					
	Teaching materials in PDF format accessible via password at the address: http://users.utcluj.ro/~szabol/Materiale_didactice/MES.htm					
-	<i>m other libraries:</i> Krishnan, R., Switched reluctance motor drives: modeli	ing, simulat	tion, analysis, design	, and		

applications. CRC Press, Boca Raton, 2017.

9. Alignment of course content with expectations of the epistemic community, professional associations, and representative employers in the field

The acquired skills will be necessary for those who wish to work in the industrial field.

10. Assessment

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade (%)
10.4 Course	Answers to questions from the taught theory.	Written examination (multiple-choice test + answer to a theoretical question).	50% (E=5 points, minimum E>2)
10.5 Laboratory	Evaluation of theoretical knowledge and practical skills during laboratory practical work.	End-of-semester test.	20% (L=2 points, minimum L≥0,5)
10.5 Project	Evaluation of the completed project, taking into account the activity during project hours throughout the semester.	End-of-semester test considering the points obtained throughout the semester.	20% (P=2 points, minimum L≥0,5)
10.6 Minimum standard of Grade calculation formula	•		

Passing the final tests for the laboratory and project (which require attendance at all laboratory and project hours), and obtaining the minimum scores for E, L, and P.

Date of completion	Lecturers	Title/ Surname/ Name:	Signature
Septembrie 2024	Course	Prof.dr.ing. Loránd SZABÓ	
Septembrie 2024	Laboratory	Prof.dr.ing. Loránd SZABÓ	
Septembrie 2024	Project	Prof.dr.ing. Loránd SZABÓ	

Date of approval in the ETHM Department Council	Head of Department: Prof. Eng. MICU Dan Doru, PhD
September 2024	
Date of approval in the Faculty of Electrical Engineering Council September 2024	Dean: Assoc. Prof. Eng. CZIKER Andrei, PhD