SYLLABUS ### 1. Data about the program of study | 1.1 | Institution | The Technical University of Cluj-Napoca | |-----|--------------------------------|---| | 1.2 | Faculty | Faculty of Electrical Engineering | | 1.3 | Department | Electrotechnics and Measurements | | 1.4 | Field of study | Electrical Engineering | | 1.5 | Cycle of study | Bachelor of Science | | 1.6 | Program of study/Qualification | Electrical Systems | | 1.7 | Form of education | Full time | | 1.8 | Subject code | 38.00 | #### 2. Data about the subject | 2.1 | Subject name | | | | Power Electronics | | | |-------|------------------------------------|--|-----------------|--|---|--|---------------| | 2.2 | Course responsible/lecturer | | | | Teodosescu Petre Dorel – petre.teodosescu@emd.utcluj.ro | | | | 2.3 | Teachers in charge of seminars | | | | Bojan Mircea – <u>mircea.bojan@emd.utcluj.ro</u>
Szekely Norbert Csaba- <u>norbert.szekely@emd.utcluj.ro</u> | | ı <u>j.ro</u> | | 2.4 \ | 2.4 Year of study 3 2.5 Semester 1 | | 2.6 Assessment | | E | | | | 2.7 9 | 2.7 Subject | | native category | | | | DS | | cate | category Optionality | | | | | | DI | #### 3. Estimated total time | 3.1 Number of hours per week | 4 | of which | 3.2 | 2 | 3.3 | | 3.3 | 2 | 3.3 | | |--|--------|------------|-----------|--------|---------|---|------------|----|---------|---| | 5.1 Number of flours per week | 4 | or which | Course | 4 | Seminar | | Laboratory | 2 | Project | | | 3.4 Total hours in the curriculum | ГC | of which | 3.5 | 20 | 3.6 | | 3.6 | 20 | 3.6 | | | 3.4 Total hours in the curriculum | 50 | or which | Course | 28 | Seminar | - | Laboratory | 28 | Project | | | 3.7 Individual study: | | | | | | | | | | | | (a) Manual, lecture material and notes, bibliography | | | | | | 1 | 8 | | | | | (b) Supplementary study in | the li | brary, onl | ine and i | in the | e field | | | | 3 | 3 | | (c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays | | | | | | 1 | 8 | | | | | (d) Tutoring | | | | | | | | 2 | | | 3 | (1) Other activities | | |---|-----| | 3.8 Total hours of individual study (summ (3.7(a)3.7(f))) | 44 | | 3.9 Total hours per semester (3.4+3.8) | 100 | | 3.10 Number of credit points | 4 | ### 4. Pre-requisites (where appropriate) (e) Exams and tests | 4.1 | Curriculum | Technical physics, electrical circuit theory | | | | |-----|------------|--|--|--|--| | 4.2 | Compotonco | Measurement of electrical quantities, analysis of electrical circuits, | | | | | 4.2 | Competence | basic principles of electricity. | | | | ### 5. Requirements (where appropriate) | 5.1 | For the course | Online, Teams platform | |-----|----------------|------------------------| |-----|----------------|------------------------| | 5.2 | For the applications | Onsite - Cluj-Napoca | |-----|-----------------------------|------------------------| | 5.2 | Seminar /Laboratory/Project | Online, Teams platform | ## 6. Specific competences | Professional | competences | Ability to address and manage specific applications of electronics and power electronics. Ability to design, model, analyze and operate electronic power systems. Ability to design and conduct practical experiments, as well as to analyze and interpret the information obtained. Ability to apply knowledge of engineering, engineering sciences and applied informatics. Ability to use modern engineering techniques, skills and tools required for engineering practice. Ability to approach and manage specific applications of general electrical engineering. Ability to work in inter and multidisciplinary teams, to communicate effectively and to understand professional and ethical responsibilities. | |--------------|-------------|---| | Cross | competences | - | # 7. Discipline objectives (as results from the key competences gained) | 7.1 | General objective | Ability to address and manage specific general electronics and power electronics applications. | |-----|---------------------|--| | | Capaifia abiactivas | - Ability to design, model, analyze and operate electronic power systems | | 7.2 | Specific objectives | - Ability to design and perform experiments, as well as to analyze and interpret the information obtained. | #### 8. Contents | 8.1. Lecture (syllabus) | Number | Teaching | Notes | |---|----------|----------------|-------| | o.i. Lecture (synabus) | of hours | methods | Notes | | Course 1. Introduction to power electronics. Basic | 2 | | | | principles. | | | | | Course 2. Power electronics applications. | 2 | | | | Course 3. Basic power electronic devices. Features, | 2 | | | | operating principles, and selection criteria. | | Power Point | | | Course 4. Power electronics modulations technics | 2 | presentations | | | Course 5. Diodes and phase-controlled AC-DC converters. | 2 | and | _ | | Phase control. | | demonstrations | | | Course 6. DC-DC converters. Part I | 2 | | | | Course 7. DC-DC converters. Part II | 2 | | | | Course 8. DC-AC converters. Generalities | 2 | | | | Course 9. PWM inverters. | 2 | | | | Course 10. Space vector PWM modulation | 2 | | | |--|----------|--|--------------| | Course 11. Inverters with several voltage levels | 2 | | | | Course 12. AC-DC converters with transistors. | 2 | | | | Course 13. AC-AC converters. | 2 | 1 | | | Course 14. Resonant converters. "Soft" switching. Passive | 2 | | | | filters in power electronics. | | | | | Bibliography | , | | ' | | | | | | | | | | | | 0.2 Carrings / Laboureton / Dunings | Number | Teaching | Netes | | 8.2. Seminar /Laboratory/Project | of hours | methods | Notes | | Laboratory 1. Introduction and labour protection. Study of | 4 | | | | passive R-C circuits | | | | | passive it e circuits | | | | | Laboratory 2. Switching of power electronic devices. | 4 | | | | • | 4 | Presentation, | | | Laboratory 2. Switching of power electronic devices. | 4 | Presentation, demonstrations | | | Laboratory 2. Switching of power electronic devices. Uncommanded rectifiers. Phase control principles. Triac | 4 | , | | | Laboratory 2. Switching of power electronic devices. Uncommanded rectifiers. Phase control principles. Triac AC-AC converter. | | demonstrations | | | Laboratory 2. Switching of power electronic devices. Uncommanded rectifiers. Phase control principles. Triac AC-AC converter. Laboratory 3. AC - DC rectifiers with thyristors. | 4 | demonstrations
, discussions, | | | Laboratory 2. Switching of power electronic devices. Uncommanded rectifiers. Phase control principles. Triac AC-AC converter. Laboratory 3. AC - DC rectifiers with thyristors. Laboratory 4. DC - DC converters. | 4 4 | demonstrations
, discussions,
measurements, | | | Laboratory 2. Switching of power electronic devices. Uncommanded rectifiers. Phase control principles. Triac AC-AC converter. Laboratory 3. AC - DC rectifiers with thyristors. Laboratory 4. DC - DC converters. Laboratory 5. DC - AC converters - Single-phase PWM | 4 4 | demonstrations
, discussions,
measurements,
resulting | | | Laboratory 2. Switching of power electronic devices. Uncommanded rectifiers. Phase control principles. Triac AC-AC converter. Laboratory 3. AC - DC rectifiers with thyristors. Laboratory 4. DC - DC converters. Laboratory 5. DC - AC converters - Single-phase PWM inverter. | 4 4 4 | demonstrations
, discussions,
measurements,
resulting | | 9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field Power electronics are the basis of all electricity conversion applications. #### 10. Evaluation **Bibliography** | Activity type | 10.1 Assessment criteria | 10.2 Assessment methods | 10.3 Weight in the final grade | |-----------------|---|---|--------------------------------| | 10.4 Course | - Answers to questions from the topic presented in the course. | Online platform grid type exam – 50 points | 50% | | 10.5 Laboratory | Portfolio of laboratoriesand topicsAnswers to questionsfrom the laboratory topic | Online platform grid evaluation and laboratory evaluation – 50 points | 50% | 10.6 Minimum standard of performance Minimum 50 points by summing the points obtained on all the activities: Course and Laboratory • 100 points = 10 (final grade) | Date of filling in:
September 2024 | | Title Surname Name | Signature | |---------------------------------------|-----------------------------------|------------------------|-----------| | | Lecturer | Teodosescu Petre Dorel | | | | Teachers in charge of application | Bojan Mircea | | | | | Szekely Norbert Csaba | Date of approval in the department | Head of department | | |------------------------------------|------------------------------------|--| | September 2024 | Prof. dr. ing. Dan Doru Micu | | | | | | | Date of approval in the faculty | Dean
Conf.dr.ing. Cziker Andrei | | | September 2024 | com.ur.nig. czikci Anurci | | | | | | | | | |