1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Electrical Engineering
1.3	Department	Electrotechnics and Measurements
1.4	Field of study	Electrical Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/ Qualification	Electrical System Cluj-Napoca in English language
1.7	Form of education	Full time
1.8	Subject code	41

2. Data about the subject

2.1	Subject name				Quality and Reliability		
2.2	Course responsible/ lecturer				Prof.dr.ing.habil. Radu A. Munteanu;		
					radu.a.munteanu@ethm.utcluj.ro		
	Teachers in charge of Seminars/ Laboratory/ Project				Prof.dr.ing.habil. Radu A. Munteanu;		
2.3					radu.a.munteanu@ethm.utcluj.ro		
					Asoc.Prof.dr.ing. Dan Iudean; <u>dan.iudean@ethm.utcluj.ro</u>		
2 4 1	oar of study	3	2.5 Semester	6	2.6 Type of assessment (E – exam, C – colloquium,	E	
2.4 î	ear of study				V – verification)	C	
2.7 Subject		DF – fundamental, DD – ir			n the field, DS – specialty, DC – complementary	DD	
categ	gory DI – compulsory, DO – el		0 – ele	ective, Dfac – optional	DI		

3. Estimated total time

3.1 Number of hours per week:	3	of which	3.2 Course	2	3.3 Seminar	1	3.3 Laboratory		3.3 Project	
3.2 Total hours per semester	42	of which	3.5 Course	28	3.6 Seminar	14	3.6 Laboratory		3.6 Project	
3.7 Individual study:	3.7 Individual study:									
(a) Manual, lecture material and notes, bibliography								2	4	
(b) Supplementary study in the library, online and in the field								2	2	
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays									}	
(d) Tutoring							2	2		
(e) Exams and tests									2	2
(f) Other activities	(f) Other activities									
3.8 Total hours of individual study [sum (3.7(a) to 3.7(f))] 33										
3.9 Total hours per semester [sum of 3.4 and 3.8] 75										
3.10 Number of credit points					4					

4. Prerequisites (where applicable)

4.1	Curriculum	Physics, Mathematics, Probability Theory, Statistics, Electric Circuit Theory
4.2	Competences	

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications	

6. Specific competences

	ompetences	1. Ability to identify, formulate, and solve engineering problems in a systemic approach.
_		2. Ability to apply engineering knowledge.
Professiona		3. Ability to use modern engineering techniques, skills, and tools necessary for engineering
		practice.
		4. Ability to design and conduct experiments, as well as analyze and interpret the information
	ŭ	obtained.
		5. Ability to approach and manage specific applications of general electrical engineering
	es	1. Identification of the objectives to be achieved, the available resources, the conditions for their
SS	enc	completion, the work stages, the working times, the deadlines and the associated risks.
Cros		
Cro	pet	2. Responsible execution of professional tasks.
Cro	compet	2. Responsible execution of professional tasks.

7. Discipline objectives (based on specific competencies acquired)

		The aim of the course is to achieve the student's engineering
7.1	General objective	contact with the techniques and analyses of reliability and quality
		of industrial products.
	After completing th • Solve technical pr theory • Calculate the relia of series, parallel, n • Be able to estimate	After completing the course, students will be able to:
		 Solve technical problems involving concepts of probability
7.2		theory
1.2		• Calculate the reliability of a technical system, using the methods
		of series, parallel, mixed, transfigurable systems and fault trees
		• Be able to estimate the quality of an industrial product.

8. Contents

8.1. (Course (Lectures)	Number of hours	Teaching methods	Additional remarks
1	Introduction to reliability. Notions of mathematical statistics	2		The teaching process uses
2	Fundamental theorems in probability theory	2	Our site our	multimedia
3	Continuous and discrete random variables. Defects and failures	2	Onsite or online teaching (according to regulations in force), presentation, interactive means	presentations (powerpoint),
4	Failure probability density. Failure rate. Failure function	2		onsite or online interaction (according to regulations in force) with students on
5	Demand analysis in the case of arbitrary distribution laws	2		
6	System reliability concepts. Series, parallel and mixed systems	2		
7	System reliability analysis. Truth table method in calculating system reliability	2	. means	the issues addressed,
8	Transfiguration methods for calculating reliability	2		materials

9	Fault trees	2		distributed to
10	Reliable design of electrical equipment. Calculation of	2		students,
	predictive reliability, in the preliminary design phase			consultation
	and in the technical design phase			hours, case
11	Average operating time. Average uptime.	2		studies.
	Experimental characteristic of the failure rate			
12	Maintainability and Maintenance	2		
13	Distribution of system reliability into component	2		
	blocks			
14	Estimation of industrial product quality. Methods for	2		
	reducing fault detection time			
Biblio	ography			
[1] V	. Panaite, R. Munteanu - Statistical Control and Reliabilit	y, EDP Bucha	arest, 1982.	
[2] R	. Munteanu, F. Drăgan - Statistical Control and Reliability	/ – Laborator	y Guide, UTC-N,	1993.
[3] h	ttp://www.ptc.com/product/windchill			
[4] T.	Baron, Al. Isaic-Maniu - Quality and Reliability, Practica	l Manual, ET	Bucharest, 1988	i.
[5] G	h. Mihoc, A. Muja, E. Diatcu – Mathematical Foundation	s of Reliabilit	ty Theory, E. Dao	cia, 1976.
[6] C	h. E. Ebeling – Reliability and maintainability engineering	g, McGraw-H	ill, 1997.	
[7] R	eliability: A Practitioner's Guide, Relex Software Corpora	ition, Intellec	t, 2003	
8.2.	Applications - Seminar /Laboratory/Project	Number	Teaching	Additional
		of hours	methods	remarks
1	Seminar 1. Descriptive statistics: information	2		The teaching
	representation, statistical tables, histograms, graphs			process uses
2	Seminar 2. Discrete random variables: distribution	2		multimedia
	function, mean, dispersion, coefficient of variation,			presentations
	probability density, classical distributions			(powerpoint),
3	Seminar 3. Calculation of probabilities, conditional	2	Onsite or	onsite or
	probabilities, total probability, Bayes' formula		online	online
	Seminar 4. Discrete probability laws: binomial,	2	teaching	interaction
	geometric, hypergeometric, Poisson		(according to	(according to
	Seminar 5. Continuous probability laws: uniform,	2	regulations	regulations in
	normal, gamma and beta, exponential		in force),	force) with
	Seminar 6. System reliability analysis, mathematical	2	presentation	students on
	models for calculating system reliability, reliability		, interactive	the issues
	logic diagrams, calculating the reliability of a fault tree		means	addressed,
		2		materials
				distributed to
	Seminar 7. Calculating the average uptime of a system			students,
				consultation
				nours, case
D'I I				studies.
Biblic	pgrapny		treat 1000	
	Muntoopu E. Drägon - Statistical Control and Reliabilit	y, EDP Bucha	nest, 1982.	1002
[2] R	. Wunteanu, F. Dragan - Statistical Control and Kellability	/ – Laborator	y Guide, OTC-N,	1993.
1 3 1 1				

[4] T. Baron, Al. Isaic-Maniu - Quality and Reliability, Practical Manual, ET Bucharest, 1988.

[5] Gh. Mihoc, A. Muja, E. Diatcu – Mathematical Foundations of Reliability Theory, E. Dacia, 1976.

[6] Ch. E. Ebeling – Reliability and maintainability engineering, McGraw-Hill, 1997.

[7] Reliability: A Practitioner's Guide, Relex Software Corporation, Intellect, 2003

9. Alignment of course content with expectations of the epistemic community, professional associations, and representative employers in the field

The content of the discipline is consistent with what is taught in other electrical faculties, both at the Technical University and at other university centers in the country and abroad. In order to better adapt the content of the discipline to the requirements of the labor market, meetings were held with representatives of the Cluj industrial and business environment.

10. Assessment

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade (%)				
10.4 Course		Written exam	100				
10.5 Laboratory		Consultations	0				
10.5 Project							
10.6 Minimum standard of performance:							
Exam promotion (grade>5)							

Date of completion	Lecturers	Title/ Surname/ Name:	Signature
September 2024	Course	MUNTEANU Radu Adrian	
	Applications Seminar/	IUDEAN Dan	
	Laboratory/ Project		

Date of approval in the ETHM Department Council
September 2024

Head of Department: Prof. Eng. MICU Dan Doru, PhD

Date of approval in the Faculty of Electrical Engineering Council

Dean: Assoc. Prof. Eng. CZIKER Andrei, PhD

September 2024