SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Electrical Engineering
1.3	Department	Electrical Machines and Drives
1.4	Field of study	Electrical Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Electrical Systems
1.7	Form of education	Fulltime
1.8	Subject code	42

2. Data about the subject

2.1	Subject name				Electrical Drives		
2.2	Course responsible/lecturer				Prof. dr. ing. Julian Birou (birou@edr.utcluj.ro). S.I. dr. ing. Szabo Csaba (Csaba.Szabo@enid.utcluj.ro)		
2.3	Teachers in c	achers in charge of seminars			S.I. dr. ing. Szabo Csaba (Csaba.Szabo@emd.uteluj.ro) Asist. drd. ing. Mihai Sueiu (Mihai.Sueiu@emd.uteluj.ro)		
2.4	2.4 Year of study III 2.5 Semester 2		2.6 Assessment		E		
2.7 Subject		Formative category					DD
category Optionality				DI			

3. Estimated total time

			11 / i							-
3.1 Number of hours per week	5	of which	3.2	2	3.3		3.3	2	3.3	1
S.I Humber of hours per week	3		Course	-	Seminar		Laboratory		Project	
2.4. Tatal la suma institution sumi sultana	70	of which	3.5	าด	3.6		3.6	20	3.6	11
3.4 Total nours in the curriculum	70	of which	Course	20	Seminar		Laboratory	20	Project	14
3.7 Individual study: 44								_		
(a) Manual, lecture materia	and	notes, bib	liograph	iy					1	.6
(b) Supplementary study in the library, online and in the field									8	
(c) Preparation for seminar	s/labo	oratory wo	orks, hor	new	ork, repor	ts, po	ortfolios, essa	ays	2	.6
(d) Tutoring			N							2
(e) Exams and tests										3
(f) Other activities										
3.8 Total hours of individual stud	y (sun	nm (3.7(a)	3.7(f)))	55					
3.9 Total hours per semester (3.4	+3.8)				125					
3.10 Number of credit points					5					

4. Pre-requisites (where appropriate)

4.1	Curriculum	General knowledge on System Theory, Electrotechnics, Electrical Machines, Power Electronics
4.2	Competence	Specific competences related to System Theory, Electrical Machines, Power Electronics

5. Requirements (where appropriate)

5.1	For the course	
5.2	For the applications Seminar /Laboratory/Project	Mandatory presence

6. Specific competences

Professional	competences	 C6. Design and control of electrical drive systems C6.1. Identification of fundamental aspects specific related to system theory and automated control, and of the investigation methods of an electrical drive system. C6.3. Application of control principles and specific procedures used for optimization of working parameters of a control system, for evaluation of the working limits of an electrical drive system. C6.4. Development of digital control based electrical drives fed by power electronic converters controlled by dedicated microprocessor or DSP based systems. C6.5. Development of a control system of reduced complexity of an industrial process using specific techniques and procedures.
Cross	competences	CT1 Identification of the main objectives, available resources, completion conditions, work steps, work times, terms and related risks. CT3 Efficient use of documentation and communication resources and assisted professional training (on-line database, specific software and hardware solutions.

7. Discipline objectives (as results from the key competences gained)

7.1	General objective	To know the electrical drive systems with DC and AC machine fed by power converters. To know the scalar control, vector control and direct torque control of induction and synchronous machines, both in motor and generator regime.
7.2	Specific objectives	 After the completion of this course, students will be able: To chose and to control an electrical drive system for a specific application; To integrate the electrical drive system in a motion control process or in a power generating process. To identify, to design and to assembly the components of an adjustable speed electrical driving system (electrical machine, power converter, mechanical process, control system, digital computer); To measure the parameters of an electrical drive system

8. Contents

8.1. Lecture (syllabus)	Numb er of hours	Teaching methods	Notes
The structure of a performant electreical drive system. Power flow componets and information Flow components.	2		
Basic principals of electrical drives. Mechanical elements and power efficiency of electrical drives, stability criteria and applications of electrical drives	2		
Electrical drive systems with DC machines feded by rectifiers nd choppers; control functions	4		
Control diagram of DC drive system	2		
Basic principals of three-phase AC electrical machines (IM and SM); rotating field, equations, characteristics	2	Multimedia	
Scalar control (U/f =ct) of AC drives	2	presentatio	

Vector control of AC drives. Principals, equivalence with DC drive control,	8	n, group	
power converters for AC drives, control strategies.		projects,	
Direct torque control of AC drives	2	case studies	
Electrical drive systems with AC machines used for producing electrical	2		
energy. Constant speed generating systems and variable speed generating			
systems (renewable energy generating systems)			
Transducers and digital computing systems used for performant electrical	2		
drive systems. Modern control strategies			
Bibliography			- III III
 . Kelemen, A.: Acționări electrice. Ed. Didactică și Pedagogică, București, 1979 2. Iulian Birou - Metode performante de control in actionari electrice de curent alte 1999. 3. Kelemen, A., Imecs, M.: Sisteme de reglare cu orientare după câmp ale n I.P.C.N. 1987 sau Editura Academiei Române, București, 1989. 	ernativ. Ed nașinilor a	itura Casa cartii <i>le curent altern</i>	de stiinta, <i>ativ</i> . Lito
4. Iulian Birou – Actionari electrice; Sisteme de reglare si control. Editura Mediam	ura, 2003 Rucuresti	1983	
5. Kelemen, A., Intecs, M.: Electronica de putere. Ed. Didactica și r cuagogica, i	Numb	1765.	
	or of	Teaching	Notos
8.2. Laboratory	eror	methods	NOLES
	hours		
 1.a. DC drive system with PM excitation, fed by power converter 1.b. Drive system with DC machine fed in both in rotor and stator by power 	4		
converters		-	
2a. Drive system with DC machines for elevators (2 quadrant) 2b. Drive system with DC machines for 4 quadrant applications	4		
3a Control of a DC drive system fed by 4 quadrant rectifier	4	-	
3b. Control of a DC drive system fed by 4 quadrant chopper	4		
 4a. Electrical drive system with three-phase rotor winding induction machine. 4b. Scalar control of three-phase squirel-cage induction machine (DSP based 	4		
open loop U/I-ct.)		-	
5b. Scalar control of three-phase induction machine (DSP based close-loop	4		
Control U/I-ct. with initial boost voltage).		_	
 by PWM voltage converter. 6b. Vector control of a permanent-magnet synchronous fed by PWM voltage converter. 	4		
Final presentation and evaluation	4	-	
Bibliography			
Acționări electrice - Îndrumător pentru lucrări de laborator, versiune electronic	a, 2019		
8.2 Project	Numb er of hours	Teaching methods	Notes
Specific project to design and compute an electrical drive application with DC or AC machine.	14		
Bibliography			
Biroi I., Szabo Cs., Suciu V., Iuoras A., Szekely N.: Acționări electrice – Elemente UTPRESS Cluj-Napoca, 2024, ISBN 978-606737-726-2	de teorie	și aplicații prac	tice,

Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

5. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade
10.4 Course	Evaluation of the acquired knowledge during the course activities: theoretical and application-based exam	Written and oral exam (3h)	55%
10.5 Seminar/ Laboratory/Project	Evaluation of the acquired competences based on: - Activity during lab - theoretical and practical tests - portfolio	 portfolio presentation tests 	45%
10.6 Minimum stand	lard of performance		
Completion and prese examination. Minimu	entation of laboratory activitie	es, laboratory portfolio presentati ect: 5. Minimum final grade for ex	on. Final am: 4.5

Date of filling in:		Title Surname Name	Signature
27.08.2024	Locturor	Prof. dr. ing. Iulian Birou	
	Lecturer	S.I. dr. ing. Szabo Csaba	
	Teachers in	S.I. dr. ing. Szabo Csaba	

charge of application

Asist. drd. ing. Mihai Suciu

Date of approval in the department

September 2024

Date of approval in the faculty

September 2024

Head of Department: Prof. Eng. MICU Dan Doru, PhD

Dean Assoc. Prof.dr.Eng. Andrei CZIKER