SYLLABUS

1. Data about the program of study

1.1	Institution	The Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Electrical Engineering
1.3	Department	Electrotechnics and Measuremens
1.4	Field of study	Electrical Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/Qualification	Electrical Systems
1.7	Form of education	Full time
1.8	Subject code	EMCS

2. Data about the subject

2.1	Subject name				Static power conver	ters	
2.2	Course responsible/lecturer				Prof. Daniel FODOREAN, PhD Eng.		
2.3	Teachers in charge of seminars				Prof. Daniel FODOREAN, PhD Eng.		
2.4 ۱	2.4 Year of study III 2.5 Semester 2			2	2.6 Assessment	Exam	Grade
2.7 5	2.7 Subject Formative category				·		YES
category Optionality						DS	

3. Estimated total time

3.1 Number of hours per week	5	of which	3.2 Course	2	3.3 Seminar	-	3.3 Laboratory	2	3.3 Proje	ct 1
3.4 Total hours in the curriculum	70	of which	3.5 Course	28	3.6 Seminar	-	3.6 Laboratory	42	3.6 Proje	ct -
3.7 Individual study:		•						•		·
(a) Manual, lecture material and notes, bibliography								30		
(b) Supplementary study in the library, online and in the field								11		
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays								9		
(d) Tutoring								3		
(e) Exams and tests								2		
(f) Other activities										
3.8 Total hours of individual study (summ (3.7(a)3.7(f))) 55										
3.9 Total hours per semester (3.4+3.8) 125										
3.10 Number of credit points 5										

4. Pre-requisites (where appropriate)

4.1	Curriculum	Electromechanics, Power Electronics, Automation
4.2	Competence	

5. Requirements (where appropriate)

5.1	For the course	Active involvement
5.2	For the applications	Mandatory
5.2	Laboratory	interfactory

6. Specific competences

_	S	Theory of electrical and magnetic circuits, electro-mechanical.
ona	nce	Development of mathematical models for the simulation of electromechanical systems: power
essi	oete	supplies, converters, rotary electric machines.
rofe	dmc	Work with software (Matlab / Simulink) and hardware (dSPACE control boards), programmable
	ŭ	source, static converter, electric machine - including position interface.
	es	Electrotechnics
SS	enc	Power electronics
Cro	pet	Mechanics
_	som	Signal processing
	0	

7. Discipline objectives (as results from the key competences gained)

ĺ	7.1	General objective	Modelling of electromechanical conversion systems.
ſ			Ability to develop their own mathematical model for the
	7.2	Specific objectives	components of an electromechanical system and their
			numerical implementation.

8. Contents

8.1 Lecture (syllabus)		Teaching	Notos
8.1. Lecture (synabus)	of hours	methods	Notes
1. Motivation. The purpose, types and result of the	2		
implementation of the electromechanical conversion.			
2. Laws & theorems used in electromechanical conversion.	2		
3. Case study for modelling for a real system (scooter).	2		
4. Mechanical modelling according to various type of loads	2		
5. Modelling techniques in electromechanical conversion.	2	PC support,	
6. Electromechanical conversion modelling in dc systems.	2	magnetic board,	
7. Electromechanical conversion modelling in ac systems.	2	exercises and	
8. Modelling of ac energy supply and equipment.	2	examples solved	
9. Modelling of dc energy supply and equipment.	2	with students	
10. Modelling of control techniques for EMS conversion.	2		
11. Modelling of regulators used in EMS conversion.	2		
12. Modelling of dc & ac energy power sources.	2		
13. Concept of real time electromechanical conversion systems.	2		
14. Electromechanical conversion system: study case.	2		
Bibliography			
• D. E. James E. Lunes, M. Dules and D.C. Danes, Metamination	T/	for I to be Electric Ve	1:-1 1:

 D. Fodorean, F.Jurca, M.Ruba and D.C. Popa. Motorization Variants for Light Electric Vehicles – design, magnetic, mechanical and thermal aspects, AlmaMater, June 2013.

- ✤ J. larminie, J. Lowry, Electric Vehicle Technology Explained 2nd edition, Wiley, 2013.
- * L. Szabo, D. Fodorean, *Simulation of electrical machine and drive assembly*, Mediamira, 2009.
- ◆ D. Sandeep, *Electric vehicle battery systems*, Newness, 2002.

8.2. Laboratory Activity	Number of hours	Teaching methods	Notes
1. Introduction to Matlab (recap): basic applications.	7		

2. Introduction to Simulink (recap): basic application.	7				
3. Simulation of dc machine (DCM) operation.	7				
4. Simulation of the operation of single / double	7				
alternating rectifiers and chopper to supply a DCM		Support on			
5. Simulation of the operation of the induction machine	3	using PC,			
with rotor in the cage, fed from the network.		Software,			
6. Modelling of the synchronous machine with PM and its	4	Equipment			
associated inverter.					
7. Implement real-time control using models developed	7				
for a given electromechanical system.					
Bibliography					
 L. Szabo, D. Fodorean, <i>Simulation of electrical machine and drive assembly</i>, Mediamira, 2009. ***, dSPACE & ControlDesk: user guide, hardware installation and implementation. 					

9. Bridging course contents with the expectations of the representatives of the community, professional associations and employers in the field

The acquired skills will be necessary for employees working in the industrial (automotive) field.

10. Evaluation

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade			
10.4 Course	Involvement in solving the written exercises	EXAM	90%			
10.5 Laboratory	Involvement in solving developing the laboratory setup and tests	Validation of the laboratory activity.	10%			
10.6 Minimum standard of performance						
5 (five)						

Date of filling in:		Title Surname Name	Signature
august 2024	Lecturer	Prof. Daniel FODOREAN, PhD Eng.	
	Teachers in	Prof. Daniel FODOREAN, PhD Eng.	
	application		

Head of Department: Prof. Eng. MICU Dan Doru, PhD

September 2024

Date of approval in the faculty

Dean Assoc.Prof. Andrei CZIKER, PhD Eng.

September 2024