1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Electrical Engineering
1.3	Department	Electrotechnics and Measurements
1.4	Field of study	Electrical Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/ Qualification	Electrical System Cluj-Napoca in English language
1.7	Form of education	Full time
1.8	Subject code	49.00

2. Data about the subject

2.1	Subject name				CAD Tools		
2.2	Course responsible/ lecturer				Prof. Dr. Ing. Ioan Marius Purcar, marius.purcar@ethm.utcluj.ro		
2.3	3 Teachers in charge of Seminars/ Laboratory/ Project				Prof. Dr. Ing. Ioan Marius Purcar, marius.purcar@ethm.utcluj.ro		
2.4 Year of study		3	2.5 Semester	2	2.6 Type of assessment (<i>E – exam, C – colloquium, V – verification</i>)	E	
2.7 Subject category		DF – fundamental, DD – i		DD — i	n the field, DS – specialty, DC – complementary	DS	
		DI – compulsory, DO – ele			ective, Dfac – optional	DI	

3. Estimated total time

3.1 Number of hours per week:	4	of which	3.2 Course	2	3.3 Seminar		3.3 Laboratory	2	3.3 Project	
3.2 Total hours per semester		of which	3.5 Course	28	3.6 Seminar		3.6 Laboratory	28	3.6 Project	
3.7 Individual study:										
(a) Manual, lecture mat	erial	and notes,	bibliogra	ohy					2	0
(b) Supplementary study in the library, online and in the field							1	2		
(c) Preparation for semi	nars,	/laboratory	works, he	omev	vork, repor	ts, po	ortfolios, essay	'S	1	5
(d) Tutoring									8	3
(e) Exams and tests									1	4
(f) Other activities									()
3.8 Total hours of individual study [sum (3.7(a) to 3.7(f))] 69										
3.9 Total hours per semester [sum of 3.4 and 3.8] 125										
3.10 Number of credit points 5										

4. Prerequisites (where applicable)

4.1	Curriculum	No
	Competences	 General knowledge of computer use
4.2		 General knowledge of technical drawing
		 Knowledge of electrical circuit and wiring design

5. Requirements (where appropriate)

5.1	For the course	Cluj-Napoca

5.2	For the applications	Cluj-Napoca
-----	----------------------	-------------

6.	S	pec	ific competences
			6.1.1. Implementation and use of hardware and software applications in specific electrical
			engineering problems.
			6.1.2. Use of dedicated CAD/CAE/CAM tools in design, numerical modeling and manufacturing in
			electrical engineering.
			6.1.3. Knowledge of the principles of computer-aided modeling:
			Wireframe models;
			 Solid models: BREP representation, Sweeping, CSG;
			Parametric and feature-based modeling;
			 Parametric representation of curves and surfaces;
	lal	ces	6.1.4. Use and application of different CAD and CAE tools in the design of electromechanical
	ssio	ten	devices and electrical circuits;
	ofes	npe	 Use of SolidWorks[®] and SolidWorks Electrical systems in the design of electrical and
	Pr	col	electronic equipment
			Use of SolidWorks Electrical and specific component libraries in the design of electrical
			control circuits
			Use of the CircuitWorks module in SolidWork for the design of printed circuit boards fully
			populated with specific circuit components, exporting or reading them in the industrial
			standard IDF 2.0, IDF 3.0 or PADS
			Use of CAE modules in SolidWorks [®] (Simulations and FlowWorks) for numerical analysis of
			designed models
			6.1.1. Use and application of CAM tools in the production of assemblies or subassemblies of
			finished products
			6.2.1. Identifying the objectives to be achieved, the available resources, the conditions for their
			completion, the work stages, the working times, the deadlines and the related risks.
	SS		6.2.2. Identifying roles and responsibilities in a multidisciplinary team and applying techniques for
	ence		effective communication and work within the team.
	peto	_	6.2.3. Efficient use of computer-aided design tools and virtual resources (Internet portais,
	Som C		specialized software applications, databases, online courses, etc.) both in Romanian and in an
	o ss		International language.
	5 C		6.2.4. Skills in using and applying several CAD/CAE/CAW systems through direct experience and
			Solving products problems.
			o.2.5. Awareness of the importance of CAD-CAE computer-aided technologies in the optimal
L			design of electromechanical devices.

7. Discipline objectives (based on specific competencies acquired)

		• Knowledge of the principles of computer-aided design (CAD-CAE)
·	Conoral objective	and CAM production techniques and tools specific to electrical and
/	General objective	electromechanical engineering and their application in the context
		of the product life cycle.
·	Specific objectives	Knowledge of the principles and techniques of computer-aided
1.2		modeling:

- Development of skills in using design software: SolidWorks
(Mechanical product design, Electrical 2D/3D, Wire Routing,
Harness Design and CircuitWorks) for project development
- Development of skills in using CAE simulation programs
integrated in SolidWorks: Simulations and FlowWorks, for
numerical analysis of designed models
- Generation of technical documentation

8. Contents

8.1.	Course (Lectures)	Number of hours	Teaching methods	Additional remarks
1	 The usage of CAD/CAM/CAE computer-aided technologies in the development of components and equipment 	2		
2	 Graphic visualization systems Principles of 2D and 3D design and modeling in integrated CAD/CAM/CAE systems Graphic coordinate systems: MCS, WCS, SCS, VCS A synthesis of geometric transformations and projections 	2		
3	Comparative presentation of the main CAD software: AutoCAD, SolidEdge, Inventor, SolidWorks, Catia, PTC Creo, Unigraphics NX, and Solid Edge.	2	DoworDoint	
4	 Computer modeling techniques: Wireframe modeling, Solid body-based modeling, Parametric and feature-based modeling Representation and visualization of curves and surfaces: Parametric representation B-spline, Bezier, NURBS Practical examples 	2	presentations , interactive tutorials, debates, problem- based learning presentations	Each course content unit has a duration of 2 hours.
5	 Elements of design used in engineering: Elements of technical drawing in mechanical, electrical and electronic engineering Tolerances in mechanical, electrical and electronic engineering Specific materials and their interaction Elements of product engineering 	2	onsite.	
6	 Introduction to AutoCAD and SolidWorks modeling systems: Fundamentals of feature-based solid body modeling Functions and modules in AutoCAD and SolidWorks 	2		

		- Part-based model design		
	•	Practical examples		
7	•	Advanced modeling with SolidWorks:	2	
		- Creating configurations		
		- Designing with macros		
		- Part assemblies		
		- Generating documentation and technical		
		drawings		
	•	Practical examples		
8	•	Advanced CAD systems and their industrial	2	
		applications:		
		- SolidWorks Electrical 2D/3D and Electrical		
		Routing in the design of electrical control		
		diagrams and electrical circuits		
		 Using the CircuitWorks module in 		
		SolidWorks for the design of printed circuit		
		boards, exporting or reading them in the		
		industrial standards IDF, PADS and MCM.		
		- Electrical Wire Routing and Harness Design		
	•	Practical examples		
9	•	AutoCAD Electrical and SolidWorks Electrical:	2	
		- Principles		
		- Standards and component libraries		
		- Standards for the representation of electrical		
		control diagrams		
		- Generating technical drawings and		
		documentation		
10	•	Practical examples		
10	•	CircuitWorks:	2	
		- Principles		
		- Industrial standards IDF 2.0, IDF 3.0 of PADS		
		- Analysis of design constraints		
		- Generating technical drawings and		
		- Ocherating technical drawings and		
		- Numerical Analysis		
		Practical examples		
11	•	Virtual testing technologies CAD-CAF with	2	
		annlications in:	-	
		- Electromagnetism		
		- Mechanical stress		
		- Thermotechnics		
		- Fluid dynamics		
	•	Model conversion and conversion standards		
		between CAD-CAD, CAD-CAE and CAE-CAE systems		

	•	Defining calculation models			
	•	Simplifying calculation models			
	•	Practical examples			
12	•	Methods for numerical simulation of electro-	2		
		thermo-mechanical processes integrated in CAE			
		systems			
	•	Principles of numerical simulation methods: finite			
		difference method (FDM), finite element method			
		(FEM), boundary element method (BEM)			
	•	Comparative presentation of FDM, FEM and BEM			
		methods			
	•	Generation of discretization grids			
	•	Association of boundary conditions and material			
		properties			
	•	Practical examples			
13	•	CAD/CAM systems and their industrial applications	2		
		- CAD/CAM integration and CNC numerical			
		code generation			
		- Virtual prototyping in the development of			
		finished products			
	•	Practical examples			
14	•	CAD data organization	2		
		- Data structure and databases			
		 Product data management (PDM) 			
	•	Principles of Product Lifecycle Management (PLM)			
	•	Use of CAD-CAE/CAM tools in PLM			
	•	Practical examples			
Bibli	og	raphy			
1. Pu		ar, M., Bojiță, A., Avram A., Instrumente CAD, ISBN 97	8-606-737-40	08-7, 136 p., Edi	tura UTPress,
2. Pi	urc	apoca 2019. Far M., Modeling the Electrode Shape Changes for Elec	troforming a	nd Electrochemi	ical Machining
Proc	es	ses, ISBN 978-973-713-272-7, 181 pp, Editura Mediam	ira, Cluj-Nap	oca 2010.	
3. Ki	un	woo, L., - Principles of CAD/CAM/CAE Systems, Addiso	n – ISBN 0-13	8-178454-4, Wes	sley Longmam,
Inc.	19	99.			
8.2.	Ap	pplications - Seminar /Laboratory/Project	Number	Teaching	Additional
	_		of hours	methods	remarks
1	9	SolidWorks:	2	Exercises and	Each
		General presentation		applications	laboratory
		System configuration		solved as	session has a
		Reading and saving data		examples,	duration of 4
		Interface customization		discussions	hours and
		2D and 3D sketches		on solution	takes place
		BIOCKS Designmentalize functions		methods,	every two
2		Basic modeling functions		completion	weeks. Thus, 2

2

works are

2

SolidWorks

	Model parameterization		of proposed	combined in
	Assembly construction		problems.	one laboratory
	Generating, viewing reports and technical			session.
	documentation of the project			
3	Elements of advanced design in SolidWorks:	2		
	Design configurations			
	Macro language			
4	Project 1 (from the practical works 1, 2, and 3)	2		
5	SolidWorks Electrical 2D:	2		
	Overview			
	System configuration			
	Defining installations and their locations			
	Drawing single and three-phase routes			
	 Inserting functions and symbols for 			
	components including their numbering			
	Setting and numbering terminals			
	Using the terminal plan			
6	SolidWorks Electrical 2D:	2		
	Creating and assigning data to project-			
	specific components			
	Creating and testing new symbols			
	Customizing component names			
	Generating, viewing reports and project			
	documentation with SolidWorks Electrical 2D			
7	SolidWorks Electrical 3D:			
	Electrical Wire Routing and Harness Design			
	Generating, viewing reports and project			
	documentation with SolidWorks Electrical			
8	Project 3 (from the practical works 5, 6, and 7)	2		
9	Designing PCBs in SolidWorks CircuitWorks:	2		
	Overview			
	System configuration			
	Reading and saving data			
	IDF and PADS format			
	Using advanced tools			
	Specific annotations			
	Automatic generation of assemblies			
10	Designing PCBs in SolidWorks CircuitWorks:	2		
	Importing data			
	Exporting data			
	ECAD format			
11	CAM systems and their industrial applications	2		
	3-axis milling machine			
	Generating CNC numerical code)			
	 Generating numerical code for making PCBs 			

	 Virtual prototyping in the development of 	l I			
	finished products (3D printer)	1			
123	Project 4 (from the practical works 9, 10, and 1)	2			
13	Simulations and FlowWorks	2			
	Presentation				
	Basic functions	1			
	Performing a configuration for numerical				
	analysis				
	Boundary conditions				
	Viewing the results using the simulation for	1			
	optimal design				
14	Project 5 (from the practical works 9, 10, and 1)	2			
Bibliography					
Purcar, M., Bojiță, A., Avram A., Instrumente CAD, ISBN 978-606-737-408-7, 136 p., Editura UTPress, Cluj-					
Napoca 2019.					

9. Alignment of course content with expectations of the epistemic community, professional associations, and representative employers in the field

The content of the discipline is consistent with what is taught in other electrical engineering faculties both within the Technical University and in other universities in the country and abroad.

For a better corelation of the discipline's content to the labour market requirements, it has been adapted according to the current requirements of the business environment at the level of Cluj-Napoca municipality.

10. Assessment

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade (%)
10.4 Course	Theoretical test	Written test presented orally or written text presented electronically. The evaluation will take place, as the case may be: online or onsite.	50 %
10.5 Laboratory/ project	Activity in class and project implementation	Activity in class and project implementation	50 %

10.6 Minimum standard of performance:

Standard: Complete the test and construct, according to design standards, an electromechanical model and an electrical diagram.

Minimum level: Correctly answer half of the test questions and construct half of an electromechanical model and an electrical diagram.

The final grade must be at least 5, and the grades for the written test and the laboratory test must also be at least 5.

Date of completion	Lecturers	Title/ Surname/ Name:	Signature
September 2024	Course	Ioan Marius Purcar	
	Applications Seminar/	Ioan Marius Purcar	
	Laboratory/ Project		

 Date of approval in the ETHM Department Council
 Head of Department:
Prof. Eng. MICU Dan Doru, PhD

 September 2024
 Prof. Eng. MICU Dan Doru, PhD

 Date of approval in the Faculty of Electrical Engineering Council
 Dean:
Assoc. Prof. Eng. CZIKER Andrei, PhD

 September 2024
 September 2024