UNIVERSITATEA TEHNICĂ. DIN CLUJ-NAPOCA

SYLLABUS

1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Electrical Engineering
1.3	Department	Electrical Machines and Drives
1.4	Field of study	Electrical Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/ Qualification	Electrical System Cluj-Napoca in English language
1.7	Form of education	Full time
1.8	Subject code	50.00

2. Data about the subject

2.1	Subject name	ct name			Electric Traction		
2.2	I OURSE RESPONSIBLE/ JECTURER				Assoc. Prof. Dr. Ing. Ștefan Breban		
2.3	Teachers in charge of Seminars/			,	Stefan.Breban@emd.utcluj.ro Assoc. Prof. Dr. Ing. Ștefan Breban, Stefan.Breban@emd.utcluj.ro S.L. Dr. Ing. Sorin COSMAN, Sorin.Cosman@ei	nd.utcluj.ro	
2.4 Y	ear of study	IV	2.5 Semester	1	2.6 Type of assessment (E – exam, C – colloquium, V – verification)	E	
2.7 Subject		DF – fundamental, DD – complementary			in the field, DS – specialty, DC –	DS	
cate	gory	DI – 1	compulsory, D	0 – е	lective, Dfac – optional	DI	

3. Estimated total time

			1				Ĩ.		1	
3.1 Number of hours per	3	of which	3.2	2	3.3		3.3	1	3.3	_
week:	5	or which	Course	2	Seminar	_	Laboratory	1	Project	-
3.2 Total hours per	42	of which	3.5	28	3.6		3.6	14	3.6	
semester	42		Course	20	Seminar	-	Laboratory	14	Project	-
3.7 Individual study:										
(a) Manual, lecture mater	ial a	nd notes, l	bibliograp	hy					20	
(b) Supplementary study i	in th	e library, c	nline and	in tl	he field				10	
(c) Preparation for semina	ars/la	aboratory	works, ho	mev	vork, repor	rts, p	ortfolios, essa	ays	24	
(d) Tutoring					-					
(e) Exams and tests						2.5				
(f) Other activities									1.5	
3.8 Total hours of individu	ial st	udy <i>[sum</i>	(3.7(a) to		гo					
<i>3.7(f))</i>]										
3.9 Total hours per semester [sum of 3.4 and 3.8] 100										
3.10 Number of credit points 4										

4. Prerequisites (where applicable)

4.1	Curriculum	Basic knowledge in: rigid solid mechanics, theory of electrical
		circuits, electrical installations, transformers and electrical

		machines, electrical drives, power electronics, theory of systems and automatic control, electromagnetic compatibility
4.2	Competences	-

5. Requirements (where appropriate)

5.1	For the course	-
5.2	For the applications	-

٦

6. Specific competences

Professional competences	 specific phenomena, theoretical models and calculation methods, as well as practical solutions, of current electric traction systems for urban, suburban and interurban transport; to know the fundamental aspects related to the design, operation and operation of fixed (power supply) and mobile (vehicles) electric traction installations. design and operation of component equipment of fixed (power supply) and mobile (actual vehicles) urban, suburban and interurban electric traction installations; efficient use of electricity in the sustainable development of environmentally friendly public transport; analyze and evaluate the overall performance of complex technical systems such as modern electric traction systems. operate and maintain equipment of energy supply installations and urban, suburban and interurban electric traction of an urban/suburban/interurban electric traction system 	
Cross competences	Identifying responsibilities and effectively applying the division of labor in a multidisciplinary urban/suburban/interurban transport engineering team.	

7. Discipline objectives (based on specific competencies acquired)

7.1	General objective	Development of skills in the field of design and operation of
		fixed and mobile urban, suburban and interurban electric
		traction installations.
7.2	Specific objectives	Assimilation of knowledge regarding the specific
		phenomena, calculation and practical solutions of modern
		electric traction systems for urban, suburban and interurban
		transport;
		Obtaining the skills of operation, performance evaluation
		and efficient use of the component equipment of the power
		supply installations and electric traction vehicles for urban,
		suburban and interurban transport.

8. Contents

8.1. Cou	8.1. Course (Lectures)		Teaching	Additiona
		hours	methods	l remarks
1	General problems regarding electric traction. The development	2	Interactiv	
	of electric traction in Romania. Recent evolution of electric		е	

	traction		lectures
2	Fixed power supply installations in urban and suburban electric	2	using
	traction (d.c.). Urban and suburban electric traction (DC)		PowerPoi
	substations. Contact Line and Return Circuit in Urban and		nt course
	Suburban Electric Traction (DC)		materials
3	Fixed power supply installations in interurban railway electric	2	
	traction (single-phase AC). Balancing of the single-phase electric		
	traction load. Single-phase AC electric traction substations.		
	Contact line and return circuit in single-phase AC electric		
	traction.		
4	The Basics of Electric Motor Vehicle (EV) Dynamics	2	
5,6	VEM transmission systems equipped with rotary motors. EV	4	
	support and guidance systems equipped with linear motors		
7,8	VEM equipped with DC traction machines and static direct	4	
	voltage drives (choppers) or variable transformers. Traction		
	mode. Electric braking mode. The Romanian electric locomotive		
9	VEM equipped with asynchronous traction machines and PWM	2	
	inverter. Traction mode. Electric braking mode		
10	VEM equipped with synchronous traction machines and PWM	2	
	inverter. Traction mode. Electric braking mode		
11	Fuel cells used to power electric vehicles	2	
12	Electrochemical batteries used to power electric vehicles	2	
13	Electric Vehicle Battery Management Systems	2	
14	Recap	2	

Bibliography

- 1. A. STEIMEL, 'Electric Traction Motive Power and Energy Supply', Oldenburg Industrieverlag, Munich, 2008.
- 2. J.-M. ALLENBACH et al., 'Traction électrique', 2nd edition, Presses Polytechniques et Universitaires Romandes, Lausanne, 2008.
- 3. I. HUSAIN, 'Electric and Hybrid Vehicles: Design Fundamentals', CRC Press, 2021.

8.2.	Applications (Seminar/Laboratory/Project)	Number of hours	Teaching methods	Additional remarks
1	Safety in laboratory. Modeling in Malab/Simulink of the dynamics of a vehicle's movement.	2		
2	Power supply of DC and AC electric traction vehicles. Case studies. Exercises. Modeling in Matlab/Simulink .	4		
3	Vehicles dynamics exercises.	1		
4	The electrical power circuit of a VEMC equipped with DC traction machine and variable transformer. Study on laboratory model.	1	Laboratory testing,	
5	The electrical power circuit of an electric vehicle equipped with a three-phase asynchronous traction machine and PWM voltage inverter. Study on laboratory model.	1	case studies, solving	
6	The electrical power circuit of an electric vehicle equipped with a three-phase synchronous traction machine and PWM voltage inverter. Study on laboratory model.	1	problems, technical visits	
7	Modeling an electrochemical battery and its management system.	2		
9	Laboratory evaluation.	2	1	
10	Technical visits to: Centre Recovery Station, Cluj-Napoca Tram Depot, Cluj-Napoca Trolleybus and Electric Bus Section, C.F. Cluj Depot - optional.			

9. Alignment of course content with expectations of the epistemic community, professional associations, and representative employers in the field

The competencies acquired will be necessary for those employed as operation and maintenance engineers of road and rail, urban and interurban electric transport systems.

10. Assessment

Activity Type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight of				
			the final grade				
			[%]				
10.4 Course	Solving theoretical or	Exam with 4-6 theoretical or	100 %				
	applied topics from the	applied topics from the course					
	course and applications.	and applications.					
		- duration 2.5 hours					
10.5 Laboratory	Answering questions and	Questions on practical and	100 %				
	modeling of an electrical	phenomenological topics from the					
	system in Matlab/Simulink.	laboratory experiments.					
		Evaluation of the model built in					
		Matlab/Simulink.					
10.6 Minimum sta	10.6 Minimum standard of performance						
The score equivalent to the minimum grade 5/10 must be obtained for both assessments.							

Date of completion: 01.09.2024	Holders	Title First Name LAST NAME		Signature
	Course	Assoc. Prof. Dr. Ing. Ștefan Breban		
	Laboratory	Assoc. Prof. Dr. Ing. Ştefan Breban		
		S.L. Dr. Ing. Sorin Cosman		
Date of approval in the Department Council			Head of Department: Prof. Eng. MICU Dan Doru, PhD	
Date of approval in the Faculty Council			Dean Assoc. Prof. Dr. Andrei Cziker	