SYLLABUS

1. Data about the program of study

1.1	Institution	Technical University of Cluj-Napoca
1.2	Faculty	Faculty of Electrical Engineering
1.3	Department	Electrotechnics and Measurements
1.4	Field of study	Electrical Engineering
1.5	Cycle of study	Bachelor of Science
1.6	Program of study/ Qualification	Electrical System Cluj-Napoca in English language
1.7	Form of education	Full time
1.8	Subject code	50

2. Data about the subject

2.1	Subject name				Virtual Instrumentation		
2.2	Course responsible/ lecturer				Conf. Dr. ing Holonec Rodica – rodica.holonec@ethm.utcluj.ro		
2.3	Teachers in charge of Seminars/ Laboratory/ Project				Conf. Dr. ing Holonec Rodica – rodica.holonec@ethm.utcluj.ro		
2.4 Year of study		111	2.5 Semester	2	2.6 Type of assessment (<i>E – exam, C – colloquium, V – verification</i>)	с	
2.7 Subject category		DF – fundamental, DD – i			n the field, DS – specialty, DC – complementary	DS	
		DI – compulsory, DO – ele			ective, Dfac – optional	DI	

3. Estimated total time

3.1 Number of hours per week:	5	of which	3.2 Course	2	3.3 Seminar		3.3 Laboratory	2	3.3 Project	1
3.2 Total hours per semester	70	of which	3.5 Course	28	3.6 Seminar		3.6 Laboratory	28	3.6 Project	14
3.7 Individual study:										
(a) Manual, lecture mat	erial	and notes,	bibliogra	ohy					1	0
(b) Supplementary study in the library, online and in the field 5							5			
(c) Preparation for seminars/laboratory works, homework, reports, portfolios, essays							1	0		
(d) Tutoring									2	2
(e) Exams and tests										}
(f) Other activities										
3.8 Total hours of individual study [sum (3.7(a) to 3.7(f))] 30										
3.9 Total hours per semester [sum of 3.4 and 3.8] 100										
3.10 Number of credit points 4										

3.10 Number of credit points

4. Prerequisites (where applicable)

4.1	Curriculum	Electronics, Electrical and Electronic Measurements, Computer Programming, and Programming Languages
4.2	Competences	Basic computer operation knowledge, Basic software programming knowledge, Basic English language skills

5. Requirements (where appropriate)

5.1	For the course	Video projector, Whiteboard

5.2	For the applications
-----	----------------------

6. Specific competences

	C4. Development and use of specific software packages for applications in metrology and			
	measurement systems:			
	C4.1 Identifying programming languages and environments specific to data acquisition and tele-			
	measurement.			
	C4.2 Solving problems in the field of metrology and interpreting their solutions, using basic			
	knowledge of computer operation and programming.			
nal ces	C4.4 Evaluating and assessing the quality of programs used to solve metrology-related problems.			
ten	C4.5 Developing computer programs for metrological applications.			
ofes	C5. Acquiring and processing informational signals from industrial processes:			
Prc	C5.1 Proper selection of methods and tools for measuring electrical and non-electrical quantities in			
	signal acquisition, processing, and transmission in a process.			
	C5.2 Explaining the capture, conditioning, interfacing, and acquisition of various quantities in a			
	process using basic knowledge.			
	C5.3 Using fundamental principles and methods to configure data acquisition and processing			
	systems.			
	C5.5 Developing data acquisition system projects using appropriate instrumentation.			
S	CT1: Identifying objectives, available resources, completion conditions, work stages, timelines,			
nce	deadlines, and associated risks.			
ete	CT2: Identifying roles and responsibilities within a multidisciplinary team and applying efficient			
dm	collaboration and teamwork techniques.			
s co	CT3: Efficiently using information sources and communication resources (Internet portals,			
Cros	specialized software applications, databases, online courses, etc.) in Romanian and an			
0	international language.			

7. Discipline objectives (based on specific competencies acquired)

7.1	Conoral objective	Developing competencies in virtual instrumentation to support
		professional training
	Specific objectives	1. Acquiring programming skills for basic algorithms used in virtual
		instrument applications.
7.2		2. Gaining skills in developing applications in virtual
		instrumentation using specific programs for signal acquisition and
		processing (LabVIEW - National Instruments).

8. Contents

8.1. (Course (Lectures)	Number of hours	Teaching methods	Additional remarks
1	Instrumentation Systems: Definitions, Classifications, Evolution. Virtual Instrumentation - definition. Control Systems	2	PowerPoint slides, Q&A,	
2	Basics of Virtual Instrumentation: Data acquisition, analysis, and presentation. Configuration examples in instrumentation systems. Applications	2	Online quizzes,	
3	Software for Virtual Instrumentation: Creating, editing, and debugging a virtual instrument in	2	problems	

	LabVIEW. Sub-instruments. While Loop, For Loop, Shift Registers. Waveform Charts			
4	Basics in LabVIEW: Data arrays, array operators, waveform charts	2		
5	Basics in LabVIEW: Structures – Case, Sequence, Event Formula Node	2		
6	Basics in LabVIEW: Strings, Clusters, I/O strings and files.	2		
7.	LabVIEW Project Architectures: Task parallelism, local/global variables, property nodes	2		
8	Components of a data acquisition system with virtual instrumentation: Signal types, examples	2		
9	Signal Conditioning: Methods and circuits for interfacing sensors and control devices with acquisition systems, using virtual instrumentation.	2		
10	Devices for data acquisition and processing: Structure, technology, multiplexers, sampling-hold circuits	2		
11	Sampling: The sampling theorem, aliasing, practical considerations. ADCs and DACs in data acquisition systems	2		
12	Analog signal generation and reading: Configuration parameters for practical applications using NI mvDAQ and NI ELVIS	2		
13	Digital signal generation and reading: Configuration parameters for practical applications using NI myDAQ and NI ELVIS.	2		
14	Introduction to embedded projects with NI myRIO: Hardware and software integration.	2		
Biblic	ography			
[1] R	odica Holonec Instrumentație virtuala-Note de curs-for	mat electron	ic	
[2] ⊦	Iolonec, Rodica, Radu Munteanu, Jr., Aplicații ale instrur	mentației virt	uale în metrolo	gie electrică,
Ν	Лediamira Cluj-Napoca, 2003,			
[3] N	/lunteanu, R.jr, Tont Gabriela, Holonec, Rodica, Traducto	oare pentru s	isteme de măsu	rare,
Ν	Лediamira Cluj-Napoca, 2003			
[4] C	ristian Foşalău, Introducere în instrumentația virtuală, E	Editura CERM	ll laşi, 2010	
[5] J	on B. Olansen, Eric Rosow-Virtual Bio Instrumentation B	iomedical, Cl	inical, and Healt	hcare
A	pplications in LabVIEW, 2011			
[6] T	homas J. Bress Effective LabVIEW Programming, NTS Pro	ess, 2013		
8.2. /	Applications - Laboratory/Project	Number of hours	Teaching methods	Additional remarks
1	LabVIEW Programming Environment: Basics.	3	Collaborative	
	Implementing a Virtual Instrument (VI).		computer-	
2	Measurements using the NI-ELVIS workstation and	3	based	
3	Debugging a VI: Creating sub-VIs Apalog signal	2	exercises	
5	generation and reading (one sample). Virtual	5	∩&∆	
	thermometer.		Individual	
4	While Loop and For Loop structures. Timing, Waveform charts, shift registers	3	implementat	

5	Data Arrays: Creation, operations. Waveform	3	ion on	
	Graphs. Intensity Graphs		computers	
6	Digital signal generation and reading: Studying a	3	•	
	circuit using a photoresistor. XY Graphs			
7	Clusters: Scaling clusters.	3		
8	Case Structure: Virtual instrument for controlling a 7-	3		
	segment display. Digital voltmeter			
9	Sequence Structure. Formula Node	3		
10	Strings: File reading/writing. Reading a song.	3		
11	Data acquisition systems: Multi-sample acquisition	3		
	(N samples). Data acquisition with NI-DAQmx.			
12	Sampling theorem and aliasing: Signal processing	3		
-	and analysis with express.vi tools.			
13	Using the NI myRIO board in virtual instrumentation	2		
	applications.			
14	Recap exercises and problems	4		
Bibli	ography			
[1] F	Rodica Holonec, Radu Adrian Munteanu, Romul Copînde	an, Florin Dra	ágan, Instrumen	tație virtuală:
1	ucrări de laborator, UT Press, 2018 Cluj-Napoca			
[2] H	Iolonec, Rodica, Radu Munteanu, Jr. – Aplicații ale instru	umentației vi	rtuale în metrol	ogie electrică,
E	ditura Mediamira Cluj-Napoca, 2003, România,			
[3] (Cristian Foşalău Introducere în instrumentația virtuală Ec	ditura CERMI	, lasi 2010	
[4] 1	National Instruments, LabVIEW Fundamentals, August 20	005.		
[5] 1	National Instruments, Getting Started with LabVIEW, Aug	gust 2006		

- [6] Jovitha Jerome, Virtual Instrumentation using LabVIEW New Delhi-110001, 2010
- [7] National Instruments, LabVIEW Basics I Introduction Course Manual, May 2006
- [8] National Instruments, LabVIEW Basics II Development Course Manual, September, 2007 Edition

[9] MyRIO project essentials_guide, 2020 Edition

9. Alignment of course content with expectations of the epistemic community, professional associations, and representative employers in the field

The competencies acquired will be essential for employees involved in designing, simulating, and testing systems using hardware and software elements of virtual instrumentation.

10. Assessment

Activity type	10.1 Assessment criteria	10.2 Assessment methods	10.3 Weight in the final grade (%)			
10.4 Course	Solving a multiple-choice test. Solving numerical problems related to virtual instrumentation.	Written exam	80%			
10.5 Laboratory	Practical application of learned knowledge in different contexts. Problem-solving through creativity and originality.	Solution verification and application testing	20%			
10.5 Project						
 10.6 Minimum standard of performance: Understanding basic concepts and terminology; Solving problems. Final Grade Calculation: 80% final exam + 20% laboratory. Passing Condition: Final grade ≥ 5. 						

Date of completion	Lecturers	Title/ Surname/ Name:	Signature	
September 2024	Course	Conf. Dr. ing Rodica Holonec		
	Applications Seminar/ Laboratory/ Project	Conf. Dr. ing Rodica Holonec		
Date of approval in t	he ETHM Departm	ent Council Head of Departmer	nt:	
		Prof. Eng. MICU Dar	Prof. Eng. MICU Dan Doru, PhD	
September 2024				

Date of approval in the Faculty of Electrical Engineering Council

Dean: Assoc. Prof. Eng. CZIKER Andrei, PhD

September 2024